본문 바로가기

분류 전체보기53

벡터의 적분 ( integral ) 벡터에 대해 미분을 할 수 있으면 반대인 적분도 할 수 있습니다. 이번에는 벡터의 적분에 필요한 기본지식들을 알아보고 실제 벡터에 대한 적분을 해보도록 하겠습니다. “Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. ” - Archimedes - 적분 개념의 시초는 너무나도 유명한 일화인 순금왕관의 진위여부를 알아낸 아르키메데스로부터 시작되었습니다. 아르키메데스는 현재의 적분과 비슷한 방식으로 도형의 면적이나 구의 면적을 구했습니다. 하지만 이 시기까지만 해도 무한대 개념에 대한 정립이 되어있지 않아 적분에 대한 개념도 없었습니다. 이후 무한대의 개념이 정립되기 시작하면서 여러 학자들에 의해.. 2020. 3. 12.
벡터의 도함수 ( derivatives ) 벡터의 미적분을 하기에 앞서 양에 대한 함수인 스칼라함수, 벡터함수에 대해서 알아보고 벡터함수의 도함수에 대해서 또 앞서 말한 함수들의 실생활에서의 적용에 대해서 알아보도록 하겠습니다. 함수 ( function ) - 스칼라 함수 고교과정에서 많이들 봐온 대부분의 함수들이 스칼라 함수입니다. $f(P)$ = $f(x,y,z)$와 같이 쓸 수 있으며, 이러한 함수들은 공간 상의 모든 부분에 숫자가 대응되어있다고 보면 됩니다. 스칼라 함수를 대표적으로 사용한 예는 온도, 수압, 에너지의 공간상 분포가 있습니다. - 벡터 함수 하나의 값에 대응하는 스칼라 함수와는 다르게 그 값이 벡터로 주어집니다. 다시 말해서 함수의 공간 상의 모든 부분이 벡터가 대응되어있다고 보면 됩니다. 벡터 함수는 v = v($P$) .. 2020. 3. 12.
벡터의 외적 ( cross product ) 벡터의 내적에서는 벡터들의 곱의 값으로 스칼라값이 나왔습니다. 하지만 벡터의 외적에서는 두 벡터의 곱이 벡터가 됩니다. 벡터의 외적의 정의와 특징을 알아보고 실제 문제에 어떻게 적용되는지 알아보도록 하겠습니다. 외적의 정의 두 벡터 a, b에 대해 v = a × b |v| = |a × b| = |a||b|$cos r$ v = [$v_1$, $v_2$, $v_3$] ( $v_1$ = $a_2$$b_3$-$a_3$$b_2$ , $v_2$ = $a_3$$b_1$-$a_1$$b_3$ , $v_3$ = $a_1$$b_2$-$a_2$$b_1$ ) 벡터의 외적은 두 벡터 a, b의 벡터곱(cross)라고 합니다. 벡터 v 각 성분의 값은 2차 및 3차 행렬식을 이용해서 쉽게 기억하실 수 있습니다. $ v_1 = \b.. 2020. 3. 11.
벡터의 내적 (dot product) 벡터의 내적은 대표적으로 일정한 힘의 일을 계산할 때 쓰입니다. 내적은 흔히들 스칼라곱으로 표현되기도 하며 다음과 같은 성질로 정의됩니다. 이제 내적의 정의 및 성질에 대해서 알아보도록 하겠습니다. 내적의 정의 a · b = |a||b|$cos r$ a≠0, b≠0 a · b = 0 a=0 또는 b=0 이렇게 두 벡터 a와 b의 길이와 사잇값 $r$의 곱으로 정의됩니다. 또한 두 벡터 a와 b의 성분으로 내적을 계산하면 a· b=$a_1$$b_1$+$a_2$$b_2$+$a_3$$b_3$ 입니다. 벡터 a와 벡터 b의 시작점을 일치시킬 때 $cos r$에서 $r$의 범위는 0≤$r$≤$\pi$입니다. 특히 $r$의 값이 0일 때는 두 벡터의 내적이 0이 되고 두 벡터는 직교하게 됩니다. 내적의 성질 임의의.. 2020. 3. 11.